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Supplementary Figures 

 
Supplementary Fig. 1: Model predictions exhibit no systematic overfitting to unmappable 
positions. a) Median model predictions for the positive strand at unmappable (x-axis) and randomly 
chosen mappable positions (y-axis) stratified by distance from the peak summit (denoted by points 
and color). Each of the thousand points corresponds to a specific relative position within the 1 kb peak 
and the color highlights different subregions within the peak regions. Points on the diagonal mean that 
model prediction at unmappable positions (x-axis) is not systematically different from the mappable 
positions (y-axis). None of the unmappable positions are predicted to have 0 probability of reads 
indicating that the model is not overfitting to the false 0 counts at these positions. Points with [0, 100] 
distance from the center are more scattered since the median is computed over very few points for 
unmappable positions and because the strongest signal associated with footprints (and hence highest 
variance) is also observed in these regions. b) Number of unmappable positions for different positions 
within the 1000 bp peak region. Overall, 0.5% of the positions were unmappable. 
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Supplementary Fig. 2: BPNet predictions and sequence contribution scores at enhancers with 
experimentally validated motifs. a) Observed and predicted ChIP-nexus read counts for the Oct4 
distal enhancer are shown to complement Figure 2b. b,c,d) Previously validated binding motifs for 
Oct4-Sox2 were re-discovered by BPNet. ChIP-nexus read counts and BPNet contribution scores for 
three enhancers are shown. b) The Oct4-Sox2 motif site in the Klf4 E2 enhancer was validated by 
deleting the site using CRISPR/Cas91. c,d) The Oct4-Sox2 binding motifs in the Nanog and Fbx15 
enhancers were confirmed previously using reporter assays of constructs with various motif 
mutations2,3. 
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Supplementary Fig. 3: Overview of all short motifs discovered by TF-MoDISco. All 33 discovered 
short motifs (information content <30 bits) are shown from left to right with: motif ID, number of seqlets 
supporting the motif, CWM, PFM and average ChIP-nexus read count distribution (180 bp) for each 
TF. Sequence logos and profile plots share the same y-axis in each column. Motif ID consists of the 
TF name for which the motif was discovered (O for Oct4, S for Sox2, N for Nanog and K for Klf4) and 
the order (starting with 0) in which the motif was discovered by the TF-MoDISco run for the TF. The 
height of the CWM varies depending on how important the motif was for the TF for which it was 
discovered. 
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Supplementary Fig. 4: BPNet trained on different chromosome sets (folds) yields similar 
motifs. The closest motif match from each BPNet/TF-MoDISCo cross-validation run resembles the 
originally discovered motifs.  
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Supplementary Fig. 5: Mapped motif instances across previously identified enhancer regions. 
The enhancer coordinates (gray boxes) are based on previous publications1,4–10 and do not 
necessarily imply that the region is sufficient for enhancer activity. Motif instances mapped by CWM 
scanning (colored boxes) are shown in the surrounding region.   



7 
 

 
 
Supplementary Fig. 6: BPNet’s contribution scores outperform match-based scores in 
recovering motif instances supported by ChIP-nexus footprints. a) ChIP-nexus profile height 
distribution at the reference summit position for BPNet motif instances of different TFs 
(Supplementary Methods). The vertical gray lines denote the 90th percentile that is used as a very 
stringent threshold for calling motif instances as having a ChIP-nexus footprint. b) Number of top-
ranked N motif instances located up to 500 bp away from the ChIP-nexus peak summits showing a 
ChIP-nexus footprint larger than the threshold defined in (a). The top N motif instances (x-axis) were 
ranked either by the contribution score magnitude at the motif region (BPNet), match score between 
the CWM and the contribution scores (BPNet-match), or the match score between the PWM and the 
sequence (BPNet-seq match). Note that all motifs in this analysis were originally called by BPNet 
(using both the contribution score magnitude and match), hence motifs with a good sequence match 
and poor contribution scores (or good contribution score and poor sequence match) were already 
excluded during the original instance calling. 
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Supplementary Fig. 7: BPNet’s contribution scores better predict differential ATAC-seq data 
than traditional methods. a) Overlap of ranked Oct4-Sox2 and Sox2 motif instances (in thousands 
k) with regions that lose ATAC-seq signal in response to either Oct4 or Sox2 depletion as previously 
defined11. In addition to the data shown in Fig. 2g, the results for co-dependent regions are shown, in 
which ATAC-seq signal is lost both in response to Oct4 or Sox2 depletion. Both Oct4-Sox2 and Sox2 
motifs are present. Motif instances ranked by BPNet contribution scores also outperformed those 
obtained by HOMER and MEME (ranked by PWM match scores). b) Linear regression model based 
on motif instance features, rather than the BPNet bottleneck layer (Fig. 2h), of the ATAC-seq log fold-
change between Oct4 ON and OFF (𝛥Oct4, left) or Sox2 ON and OFF (𝛥Sox2, right). Note that the 
Pearson correlation (RP) coefficient for both motif instance based models is only around half of that of 
the models based on the bottleneck layer. The motif instance features were the number of BPNet 
motif instances located in the 1 kb ChIP-nexus peaks and their average sequence match scores 
(Methods). Similar results were obtained for motif instances derived by MEME/FIMO, ChExMix and 
HOMER. This result indicates that the mapped motif instances are strongly enriched in differentially 
accessible sites after TF depletion and contribute to the prediction of differential ATAC-seq signal. 
However, the sequence representation (bottleneck layer) learned by the BPNet model encodes 
additional information (such as motif syntax) beyond linear, additive effects of motif instances, thereby 
significantly improving prediction of differential accessibility. 
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Supplementary Fig. 8: No evidence that Nanog binds with a partner. a) Median Oct4, Sox2, 
Nanog and Klf4 ChIP-nexus signal, predicted BPNet signal and DeepLIFT contribution scores show 
no signal across the genomic instances matching the putative Nanog-Sox heterodimer motif 
(RMWMAATWNCATTSW)12. The signal for Oct4-Sox2, Sox2, Nanog, and Klf4 motif instances are 
shown as control. b) Since the Nanog motif resembles the known Pbx binding motif, we performed 
Pbx ChIP-nexus experiments to test whether Pbx might be a binding partner for Nanog. However, the 
average Nanog, Pbx and Sox2 ChIP-nexus binding profiles (positive strand on top, negative strand at 
bottom) show no detectable footprints for Pbx or Sox2 on the three Nanog motifs, arguing against Pbx 
or Sox2 being stable interaction partners. However, an unknown interaction partner cannot be ruled 
out. c) The average Pbx ChIP-nexus footprint on the known Pbx motif from JASPAR13 (top 1000 
based on PWM-match score) confirms that the Pbx ChIP-nexus experiment worked (left). Likewise, 
Sox2 shows specific binding to its identified Sox2 motif (right). Note that the y-axis in Read per million 
(RPM) is the same for all graphs to allow comparisons of signal strength.  
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Supplementary Fig. 9: Most over-represented instances of strict spacings between motifs are 
due to ERVs. Histograms depicting the frequency of center-to-center inter-motif distances across the 
11 representative motifs. Colors represent ERV classes which overlap with the corresponding motif 
pairs. 
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Supplementary Fig. 10: In-silico motif interactions for all strand orientations. a) The influence of 
Motif B on the binding of TF A at Motif A is quantified by the fold-change of predicted footprint height 
at the reference summit position when Motif B is present or absent nearby (hAB vs hA). The footprint 
height fold-change is corrected for the "shoulder" effect of Motif B by subtracting the predicted 
footprint height when only Motif B is present in the sequence. b) Distance distribution of all CWM-
derived motif instance pairs in the genome stratified by motif identity and strand orientation. Note that 
for homotypic interactions, ++ and -- are the same and are shown as ++. Motif pairs overlapping 
transposable were filtered out. c) In-silico analysis of motif interactions on synthetic sequences 
measuring the predicted footprint height fold-change for all motif pairs across all strand orientations. 
Note that no clear differences between the possible strand orientations were detected. 
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Supplementary Fig. 11: BPNet trained on different chromosome sets (folds) yields similar in-
silico interactions results. In-silico interaction analysis as shown in Fig. 4a using BPNet trained on 
five different chromosome folds and using the motifs discovered by TF-MoDISCo for each fold. The 
observed interactions are highly reproducible across all folds. 



13 
 

 
Supplementary Fig. 12: Nanog motif periodicity analysis for BPNet trained on different 
chromosome sets (folds). a) Distance distribution of motif pairs (as shown in Figs. 5e-h) for motif 
instances obtained from BPNet models trained on each of the five different chromosome folds. The 
motif instances were obtained by scanning the contribution scores with the CWMs obtained from the 
different chromosome folds as shown in Supplementary Fig. 4. b) Nanog ChIP-nexus signal at the 
reference summit position for motif pairs as shown in Fig. 5i-k for different BPNet models trained on 
different chromosome folds and the corresponding motifs. Smooth curve fit (B-splines) is depicted as 
a red line. The fit error bars denoting the 95% confidence intervals are shown as blue ribbon. 
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Supplementary Fig. 13: Nanog exhibits helical periodicity independent of motif orientation. 
Nanog ChIP-nexus binding maximum signal across Nanog motif pairs (blue dots), where the median 
of each motif pair distance is depicted as a red line. Nanog on average binds higher when the partner 
motifs (Oct4-Sox2, Sox2, Zic3) are within the preferred spacing to Nanog. This trend is observed for 
all motif orientations (unless there are not enough data points as observed for one of the Oct4-
Sox2<>Nanog strand orientations).  Smooth curve fit (B-splines) is depicted as a red line. The fit error 
bars denoting the 95% confidence intervals are shown as blue ribbon. Number of data-points used to 
estimate 50 smoothing parameters for each plot: Nanog<>Nanog ++ 8930 +- 3922 -+ 3382, 
Sox2<>Nanog ++ 3299 +- 4011 -+ 3920 -- 3736, Oct4-Sox2<>Nanog ++ 4481 +- 4849 -+ 4947 -- 
4945, Zic3<>Nanog ++ 1456 +- 1300 -+ 1359 -- 1214. 
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Supplementary Fig. 14: Replicates for the CRISPR experiments were highly correlated. ChIP-
nexus experiments were performed on wild-type (WT) R1 ESCs in biological replicates (on different 
days with cells grown at a different passage number): two for Sox2 and three for Nanog. For each 
CRISPR motif mutation, ChIP-nexus experiments of three monoclonal cell lines were performed and 
used as replicates: clones B07, B11 and C10 for the mutant Sox2 motif, and clones B07, B09 and F10 
for the mutant Nanog motif. Pairwise comparisons between biological replicates across WT and clonal 
replicates of cell lines clones of CRISPR motif mutations show high Pearson correlations (Rp), as 
shown in the top left of each scatter plot. Each point in the scatter plots represents ChIP-nexus RPM 
counts of either Sox2 or Nanog across 151 bp genomic windows, centered on the respective motif. 
Known enhancer regions from Supplementary Fig. 5 (Enhancers) and the selected mutated genomic 
region (CRISPR site) remain consistent between replicates. 
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Supplementary Tables 
Supplementary Table 1. List of all ChIP-nexus and ChIP-seq replicate experiments and the 
associated quality-control metrics including the number of unique de-duplicated reads, highest 
number of IDR peaks between replicate pairs, number of “optimal IDR peaks”, the IDR rescue 
ratio, and fraction of reads in IDR optimal peaks (FRiP). All samples had uniformly FRiP 
scores, an estimate for enrichment. For all four TFs, ChIP-nexus samples had a <2 IDR rescue 
ratio (ratio of the number of IDR optimal peaks from pseudo-replicates to the number from true 
replicates), an estimate for reproducibility. The IDR optimal peaks from ChIP-nexus data also 
showed strong overlap with those from ChIP-seq data targeting the same TF. 
 
Supplementary Table 2: Further binary classification metrics corresponding to Extended 
Data Fig. 4a. 
 
Supplementary Table 3: Sequences of guide RNA and single-stranded oligo donors for 
CRISPR mutations. 

Supplementary Data 
Supplementary Data 1. Clustered motifs and their labels. Motifs were obtained by TF-
MoDISco ran on BPNet models trained on 6 different datasets: i) seq/profile.peaks-union 
(ChIP-seq profile model trained on a union of ChIP-nexus/ChIP-seq peaks), ii) seq/binary 
(binary classification model trained on genome-wide ChIP-seq peaks), iii) seq/profile (ChIP-
seq profile model trained in ChIP-nexus peaks), iv) nexus/profile.peaks-union (ChIP-nexus 
profile model trained on a union of ChIP-nexus/ChIP-seq peaks), v) nexus/binary (binary 
classification model trained on genome-wide ChIP-nexus peaks), vi) nexus/profile (ChIP-
nexus profile model trained in ChIP-nexus peaks). Each motif logo shows the sequence 
information content of a PFM. The logo title consists of the manually assigned motif label (e.g. 
TE1, Oct4-Sox2) and the motif ID composed from the model name, the task name and TF-
MoDISco motif ID (e.g. seq/profile/Nanog/m0_p13). 

Supplementary Videos 
Supplementary Videos 1-6. BPNet profile predictions averaged across 128 random 
sequences with two motifs inserted at different positions. Centers of the motifs are marked by 
the vertical gray line. Motif distance is shown on the right. For each motif, the predicted profile 
of the corresponding TF is shown on the y-axis. 
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Supplementary Note 

Supplementary Q&A 

Q1. What are the key innovations in the design of the BPNet model compared to 
previous deep learning models of TF binding? 
 
1) The predominant prediction task for TF binding models in the current literature is a binary 

classification task where the goal is to discriminate sequences putatively bound by a TF 
(based on relatively low-resolution ~200 bp peak calls) from background unbound 
sequences. However, the primary objective of our study is the discovery of cis-regulatory 
motif syntax of TF binding. Binary peak classification is not the optimal prediction task for 
this objective. For binary peak classification, the output labels for all bound regions (peaks) 
are the same irrespective of the subtle changes in motif syntax across these bound 
sequences. Hence, the classification models tend to focus more on features that 
discriminate bound from unbound sequences such as motifs as compared to subtle 
variation in motif syntax across the bound peak sequences that give rise to distinct base-
resolution binding profiles. The reason for our model’s success in deciphering motif syntax 
is that we modeled the experimental binding profiles at the highest possible resolution 
across the peak regions, which allowed the models to learn how motif syntax within bound 
sequences affects subtle variations in base-resolution binding profiles. 

2) BPNet is the first neural network architecture designed to model continuous base-
resolution binding profiles from ChIP-nexus/exo and ChIP-seq experiments as a function 
of DNA sequence. This in contrast to all previous deep learning approaches that model 
binding data as binary binding events or continuous binding signal summarized at low-
resolution (100-200 bp). The BPNet architecture is inspired by the original WaveNet 
architecture with dilated convolutions for modeling speech signals. The dilated 
convolutional architectures with residual connections have been previously used for 
modeling chromatin profiles (e.g. Basenji) and splicing (e.g. SpliceAI). The dilated 
convolutions allow the model to use a wide receptive field without exploding the number 
of parameters. We use a fully convolutional model without any pooling operations for the 
profile prediction because we want to maintain base resolution throughout the model and 
primarily want to model translational equivariance (captured by convolutional layers) 
instead of translational invariance (captured by pooling layers). We also avoided pooling 
layers (particularly max pooling layers) because they result in models that are less robust 
to specific choices of hyperparameters (e.g. size and stride of pooling) and produce less 
stable interpretation (e.g. DeepLIFT profiles). The residual connections allow the models 
to learn more efficiently using features across multiple scales. This architecture class that 
we chose is simple to implement, memory efficient and trains efficiently. But as we have 
shown, our models show high prediction performance (on par with replicate concordance 
for profile prediction), are very robust to different hyper-parameters and allow stable 
inference of motifs and motif syntax that are validated by experiments. 

3) BPNet introduces a new multi-scale loss function to separately optimize the predictions of 
ChIP-nexus profile shape and total read counts. We use a multinomial negative log-
likelihood loss function for profile shape prediction. The multinomial distribution elegantly 
models the sparse distribution of reads across all the positions in the input sequence 
accounting for zeros that occur due to low read coverage. Since the model predicts the 
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expected number of reads at each position based on the estimated multinomial 
distribution, the model is able to effectively impute and denoise sparse base-resolution 
profiles. 

4) BPNet introduces a new approach to automatically correct binding profiles for assay 
biases and prevent the model from learning spurious sequence patterns that explain assay 
biases. Specifically, BPNet can use a control experiment as an auxiliary input. The model 
is fit to the ChIP-nexus/ChIP-seq binding profiles using both the sequence and the control 
experiment track. The model automatically learns to regress out the signal that can be 
explained by the control track. This approach allows us to directly model and predict raw 
counts and use count-based loss functions such as the multinomial, while implicitly 
accounting for biases. Previous approaches typically fit their models to binding data 
corrected via ad-hoc pre-processing methods. 
 

Q2. What are the enhanced model interpretation methods introduced in the BPNet 
framework to infer motifs and motif syntax? 
 
1) Several neural network feature attribution methods (e.g. in-silico mutagenesis, input gated 

gradients, DeepLIFT, integrated gradients and GRAD-CAM) have been previously applied 
to deep learning models of TF binding to infer contribution scores for each base (feature) 
in an input sequence to a scalar binary or continuous binding prediction. Here, we 
introduce the first approach to infer base-resolution contribution scores for input 
sequences with respect to profile outputs from sequence-to-profile models. Specifically, 
we adapted our DeepLIFT method for profile outputs. Previously, these contribution scores 
have typically only been used to visualize anecdotal examples of sequence motifs in 
specific case study sequences or to score non-coding genetic variants. Here, we provide 
the first genome-wide analysis of contribution scores and show convincingly how they can 
accurately identify predictive motif instances genome-wide, outperforming traditional motif 
discovery and scanning approaches. 

2) The typical approaches used to derive motifs from deep learning models of genomic 
sequence include visualizing the convolutional filters directly or deriving position weight 
matrices (PWMs) from subsequences that activate convolutional filters in the first layer. 
These approaches have several drawbacks since neural networks learn representations 
in a distributed fashion i.e. no single filter is guaranteed to capture a complete motif and 
there is significant redundancy in the patterns learned by different filters. Hence, 
interpreting filters directly often results in deriving incomplete motif patterns and many 
partially redundant motifs. Another drawback is that deriving PWMs that simply capture 
base frequencies results in a fundamental loss of information with regard to the predictive 
base contributions, as well as any interaction effects between bases within and across 
motifs. The TF-MoDISco algorithm we use here is fundamentally different in that it 
reconstructs less redundant and complete motif representations from the base-resolution 
contribution scores instead of individual filters. We show that TF-MoDISco is able to learn 
several novel motifs missed by other approaches for four highly studied pluripotency 
transcription factors. 

3) We are the first to highlight the fundamental difference between contribution scores and 
base frequencies to derive motif representations. We introduce the contribution weight 
matrix (CWM) representation, which is conceptually similar to the PWM but records the 
average contribution rather than frequency of bases in a motif. Using transposable 
elements, we show very clearly the advantage of the CWM over the PWM representation. 
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PWMs highlight the entire transposable element, whereas the CWM representation only 
highlights the predictive subsequences corresponding to the motifs bound by the TFs. 
Furthermore, the CWM motif representation for Nanog highlights the helical pattern in the 
flanks of the motif, whereas the equivalent PWM representation does not. 

4) We develop new methods to identify predictive motif instances by scanning contribution 
score profiles with CWMs (derived using only sequence and the BPNet model without 
using the measured binding profiles). We show that this new motif scanning approach 
outperforms PWMs even when restricting the regions to be close to the peak summit or 
when augmenting the ChIP-nexus summit position for BPNet (Extended Data Fig. 3b). 
Further, the CWM scanning approach shows the most dramatic improvements for short 
motifs with complex periodic patterns such as the Nanog motif. 

5) Finally, we combine all of these innovations in the in-silico oracle approach for discovering 
motif syntax. We develop two new approaches - one based on using simulated sequences 
and one based on perturbing real genomic sequences to derive robust, global rules 
learned by the models of how motif syntax influences transcription factor binding 
cooperativity. We show that these two approaches complement each other and support 
each other's findings. We are the first to show that high performance neural networks of 
regulatory DNA sequence learn ab-initio subtle but critically important syntactic patterns, 
e.g. the pervasive 10.5 bp helical periodicity displayed by Nanog. We are also the first to 
show that neural networks can learn preferred soft spacing constraints between motifs that 
are predictive of cooperative binding. The ability of neural networks to learn these higher-
order, non-linear patterns has long been known, but to our knowledge, no one has 
previously shown robustly that deep learning models of genomic sequences can 
successfully capture these higher-order patterns and that they can be extracted to reveal 
biologically meaningful information. Not only can we predict these patterns, but we now 
also validate the extracted syntax experimentally, by performing point mutations using 
CRISPR/Cas9 and analyzing the change in TF binding with ChIP-nexus experiments. The 
results clearly confirm that the periodic Nanog binding depends on the Nanog and the 
Sox2 motifs (but that Sox2 binding does not depend on the Nanog motif). 
 

Q3. What is the conceptual difference between classical motif discovery methods like 
MEME/HOMER and BPNet’s motif discovery method? 
 
Traditional motif discovery methods (e.g. MEME, HOMER) are based on identifying 
statistically overrepresented patterns in bound sequences relative to a background set of 
sequences. Our method does not rely on the frequency of sequence patterns in a foreground 
set of sequences relative to a background set. Instead it learns sequence patterns that are 
predictive of the binding profiles. Frequent patterns that have no predictive value are not 
learned and rare patterns that have predictive value are learned. Thus, while patterns have to 
be present across multiple sequences to have predictive value, our ability to discover them is 
not simply based on over-representation. This is exactly why we can learn several less 
frequent motifs predictive of ChIP-nexus footprints, while traditional methods that primarily 
focus on over-represented patterns miss these motifs.  

The contrast between frequency of patterns and their predictive contribution to the 
output is the fundamental difference between the contribution weight matrix (CWM) 
representation that we introduce, and the classical frequency-based position frequency/weight 
matrix (PFM/PWM) representation (PWMs are log-odds of PFMs normalized against 
background frequencies). The case study of transposable elements best highlights this 
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fundamental difference. The PFMs highlight the entire over-represented retrotransposon 
sequences. However, the CWMs highlight the specific predictive bases within the 
retrotransposons, which is a clear advantage over traditional methods. 

 
Q4: How is the BPNet oracle approach for syntax discovery different from classical 
methods? 
 
Previous methods derive summary statistics of over-represented or evolutionary conserved 
patterns of motif or TF peak co-occurrence and spacing from bound and unbound genomic 
sequences14–16. While these summaries are useful, they suffer from several issues. First, it is 
difficult to estimate the marginal effect of each property of cis-regulatory syntax (e.g. spacing 
between two motifs) due to systematic confounding from other syntactic properties (e.g. 
presence of other motifs, homotypic and heterotypic motif density) and background sequence 
composition of genomic sequences. Second, the number of genomic instances that sample 
each syntactic property may not be sufficient to obtain robust statistics. Finally, it is difficult to 
make conclusions about the impact of an over-represented syntactic property on cooperative 
TF binding without systematic perturbation experiments. These issues are typically resolved 
experimentally by performing in vitro binding experiments using libraries of carefully designed 
synthetic sequences that sample desired properties of interest17–21.  

Our in-silico oracle approach that uses designed synthetic sequences mimics this 
experimental approach since the model is trained to predict experimental in vivo binding 
profiles. However, the model can sample substantially larger numbers of synthetic constructs 
by smoothly varying syntactic properties while accounting for sequence backgrounds. The in-
silico mutagenesis experiments on genomic sequences not only provide additional support for 
conclusions derived from the synthetic sequences, but also reduce the likelihood of making 
unreliable conclusions about “out-of-distribution” syntax properties that are never found in the 
genome.  

By mimicking the experimental approach in silico, the oracle approach allows one to 
home in on precise hypotheses that can be tested using less scalable in vivo experiments 
such as the CRISPR editing experiments we present. Furthermore, the oracle approach is 
very general and will be useful to systematically study further syntactic properties and their 
joint effects in the future (e.g. trade off between affinity, motif density and spacing). These 
kinds of interactions would be very difficult to infer from explicit parameters in computational 
models. 

 
Q5. Can we use CWM motifs to identify motif instances in sequences that do not have 
experimentally measured ChIP-nexus profiles? 
 
Yes. The CWM scanning approach can be used to identify motif instances in any query 
sequence. The procedure requires two components - the input sequence and the BPNet 
model. These are the same two components also used for traditional PWM motif scanning 
(the PWM happens to the “model” in that case). The BPNet model predicts the output binding 
profile from the raw input sequence using a forward pass. That “predicted output” is then used 
to infer a contribution score profile across the input sequence using backpropagation 
(DeepLIFT). The CWM (also derived from the DeepLIFT contribution scores with respect to 
predicted profiles from all training set sequences) is then used to scan the contribution score 
profile of the input sequence. Nowhere in this procedure do we use the measured ChIP-nexus 
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profiles. All components are derived just from the raw sequence using the model and the 
interpretation methods. 
 
Q6. Can BPNet be used to predict TF binding in new cell types or new species not 
used in training? 
 
The sequence-only BPNet models cannot be directly used, as is, for cross cell-type prediction. 
Transcription factors typically have different genomic occupancy profiles across different 
cellular contexts. The direct binding motifs for most TFs are generally consistent across cell 
types. However, the higher-order syntactic rules and cooperative interactions with motifs of 
other TFs vary across cell types. A model that uses only DNA sequence as input and is trained 
on binding profiles of a TF in a one cell type will learn sequence features that are specific to 
that cell type. Because the DNA sequence of a genome is the same across different cell types, 
a sequence-only model of TF binding cannot predict different genome-wide TF binding 
landscapes in new cell types not used in training. However, the primary use-case for BPNet 
framework is not prediction of TF binding in new cellular contexts. Rather, we designed BPNet 
to enable inference of context-specific sequence determinants of TF binding. BPNet models 
could be extended to take as input sequence and cell-type specific information such as 
chromatin accessibility or histone mark profiles. These multi-modal models trained to account 
for differences in training and test cell type regulatory syntax are likely to generalize across 
cell types. 
 
BPNet models for a TF in a specific cell-type in one species could in principle be used to 
predict binding profiles for the same TF in a well matched cell-type in a closely related species 
(e.g. human and mouse). However, there can be several issues with this naive cross-species 
prediction approach. First, the cell types may not be equivalent across species. E.g. mouse 
ESCs that we use in this work correspond to a “naive” pluripotent state whereas typical human 
ESCs cultured under the same conditions correspond to a later “primed” states. Further, the 
genomes of different species often house very different classes of repeat elements. E.g. 
mouse and human genomes have very different classes of transposable elements to which 
several TFs bind, which will cause erroneous predictions of a model that is naively applied 
across species. Finally, a sequence-only model is unlikely to be optimal for genome-wide 
prediction of TF binding across species. Cross-species prediction would improve significantly 
by coupling the BPNet sequence model with (i) additional input signals as as chromatin 
accessibility or histone marks and (ii) the use of domain adaptation methods for training that 
enable models to generalize to out-of-distribution settings by avoiding domain-specific (i.e. 
species-specific) features. These are exciting directions for future enhancements. 
 
Q7: What were the rigorous evaluations and independent validations that support the 
statistical robustness and biological validity of results? 
 
First, we performed extensive quality control analyses on our ChIP-nexus data, ensuring high 
reproducibility, sensitivity and antibody specificity (Online Methods). Second, we corrected for 
assay-specific biases by explicitly modeling control datasets (Online Methods) and excluded 
any discernible influence of mappability artifacts on BPNet’s predictions (Supplementary Fig. 
1). Third, we showed that independently trained models using different subsets of the binding 
data produced highly consistent results, including the motif syntax rules (Supplementary Fig. 
S4, S11, S12a), thereby minimizing the possibility of artifacts due to memorization or over-
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fitting to the training data. Fourth, we found that the derived motif syntax rules were internally 
consistent. They were inferred from both synthetic and genomic DNA sequences (Fig. 4, 
Extended Data Fig. 6) and the directionality was consistent with the indirect binding footprints 
observed in ChIP-nexus data (Fig. 3). Nanog’s helical periodicity was also found in the ChIP-
nexus data, the raw contribution scores, as well as the spacings between motifs (Fig. 5). Fifth, 
the sequence representation learned by BPNet from TF ChIP-nexus data transferred 
seamlessly to accurately predict independent, previously published experiments, i.e. the 
changes in chromatin accessibility after TF depletion (Fig. 2g-h). Finally, we performed 
CRISPR-induced point mutations in two binding motifs and showed that the changes in ChIP-
nexus profiles are in remarkable agreement with BPNet’s predictions and inferred syntax (Fig. 
6). These careful controls and evaluations provide confidence in the ability to use BPNet as a 
generic toolkit for deriving biological insights about syntactic properties of regulatory DNA from 
ChIP-nexus and ChIP-seq experiments. 
 
Q8: Can motifs, motif instances and motif syntax be learned from BPNet models of TF 
ChIP-seq data? Can BPNet also be applied to CUT&RUN, DNase-seq or ATAC-seq 
profiles? 
 
Yes. As we have shown in this paper, the BPNet model, with minor modifications to the 
architecture, can be successfully trained on base-resolution TF ChIP-seq profiles. 

● BPNet shows high predictive performance for ChIP-seq profiles similar to the ChIP-
nexus data (on par with replicate concordance for profiles). 

● DeepLIFT+TF-MoDISCo applied to the ChIP-seq models is able to recapitulate the 
majority of the motifs learned by the ChIP-nexus models.  

● With respect to accuracy of motif instances, the ChIP-nexus BPNet profile models 
outperform ChIP-seq BPNet profile models, which outperform ChIP-seq binary 
models. Hence, modeling profiles directly and improved resolution of the ChIP-nexus 
profiles collectively contribute to improved motif instance identification. 

● The ChIP-seq models are also able to learn subtle syntax features such as helical 
periodicity and preferred spacing of motifs. E.g. helical periodic Nanog motif spacing 
is also observed from the DeepLIFT profiles inferred from Nanog ChIP-seq  models. 

 
BPNet can be applied to CUT&RUN, DNase-seq and ATAC-seq with minor modifications to 
the architecture. We plan to release archetype models for these other data modalities in the 
near future. The fidelity of the BPNet models as well as quality and sensitivity of the 
interpretation of syntax largely depends on the quality of the data.  
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Supplementary Text 

BPNet and TF-MoDISco outperform PWM scanning methods in motif discovery, 
mapping of motif instances and syntax discovery  
Motif discovery 
To evaluate the extent and quality of motifs discovered by the BPNet framework in the light of 
previous methods, we compared our approach to ChExMix22, MEME23–26 and HOMER27. We 
used each of these methods to discover motifs using ChIP-nexus peaks for Oct4, Sox2, Nanog 
and Klf4 (for specific parameters, see Benchmarking alternative methods in the 
Supplementary Methods section below). For each of the methods (besides BPNet), we 
selected the motifs with the closest match to the 11 core TF-MoDISCo motifs discovered using 
BPNet (Extended Data Fig. 3a). We found that ChExMix, MEME and HOMER individually 
discovered at most only 6 out of 11 motifs. They collectively found 9 out of 11 motifs. Only 
Oct4-Sox2, Sox2 and Klf4 motifs were discovered by all four methods. Zic3 and Esrrb motifs 
were only discovered by BPNet and HOMER. The B-box motif was only discovered by BPNet 
and MEME. We speculate that these motifs were missed by ChExMix due to the associated 
footprints being heterogeneous and fuzzy with relatively lower read coverage. MEME/HOMER 
may have missed some of these since they are not as over-represented as the primary motifs. 
Moreover, the other methods were limited in their ability to discover long TEs motifs with the 
default parameters. Although changing the parameters for the other methods may allow the 
discovery of some TEs, the dependence on these parameters makes it difficult for the methods 
to discover TEs alongside short motifs in a flexible and robust manner. Moreover, these other 
methods cannot highlight the short constituent motifs bound by the TFs within the longer TE 
motifs. These results suggest that the BPNet framework provides substantial improvements 
in motif discovery compared to ChExMix, MEME and HOMER. 
 
Evaluation of motif instances 
To evaluate the quality of the called motif instances in the genome in terms of their false-
positive rates, we compared the BPNet approach using CWM scanning to classical position 
weight matrix (PWM) scanning. To determine the false positive rate of the motif instances in 
the test chromosomes, we considered motif instances supported by strong ChIP-nexus 
footprints (‘ChIP-nexus profile height’ above the 90th percentile) as true binding sites 
(Extended Data Fig. 3b). Since the number of motif instances depends on the motif scoring 
threshold, rather than using a fixed threshold, we instead evaluated the true-positive fraction 
across the ranked list of motif instances. PWM scanning approaches only use the input 
sequences and the PWMs. CWM scanning uses TF-MoDISCo CWMs, the input sequence 
and DeepLIFT contribution scores to the predicted (not measured) ChIP-nexus profiles which 
are derived from the BPNet model. We performed motif instance evaluation only on 1 kb input 
sequences from the held-out (test) chromosomes, which were not used to train BPNet. Hence, 
both BPNet CWM scanning and PWM scanning approaches (FIMO and HOMER) do not 
implicitly or explicitly use the measured ChIP-nexus profiles to call or score instances. 
ChExMix uses the measured ChIP-nexus profiles to call motif instances. CWM based motif 
instances were ranked based on their ‘motif contribution scores’. PWM based motif instances 
were ranked based on PWM match log-odds scores. We found that across matched number 
of ranked instances, CWM motif instances had substantially more overlap with strong ChIP-
nexus footprints (‘true positives’) and thereby exhibited a lower false positive rate compared 
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to PWM based motif instances from FIMO and HOMER, as well as ChExMix (Extended Data 
Fig. 3b, top). 
 
Since this evaluation was performed for motif instances in 1 kb sequences centered at ChIP-
nexus peak summits, most of the motif instances tend to be located near the center. To show 
that the improvement of BPNet is not primarily coming from the fact that it could prioritize 
motifs in the center higher, we computed the contribution scores with BPNet on sequences 
jittered +/- 200 bp around the peak summit (BPNet-augm). We found that this jittering resulted 
in negligible drop in performance (Extended Data Fig. 3b), indicating that the superior 
performance of CWM scanning is not due to an implicit positional bias.  
 
Furthermore, we repeated the evaluation by restricting motif instances to the central 200 bp 
around the ChIP-nexus peak summits (Extended Data Fig. 3b, bottom). This scenario is 
commonly used with PWM scanning to reduce the false discovery rate, because true motif 
instances are more likely to be found closer to the peak summits. Even in this scenario, 
BPNet’s CWM scanning outperformed all other methods for all motifs. The only exception was 
Oct4-Sox2, where several PWM methods performed as well as CWM scanning, likely due to 
the high information content of this particular motif. The largest improvement of BPNet CWMs 
over PWM methods was seen for the short Nanog motif. Even though the CWM has the same 
length as the PWM, the base-resolution contribution scores scanned by the CWM are 
dependent on the entire sequence context of the motif within the 1 kb region and thus can 
integrate more contextual information relevant for TF binding. E.g. a Nanog motif instance can 
get a higher contribution score if it is present in the vicinity of other ~10.5 bp spaced Nanog 
motif instances. In contrast, the PWM scores sequence matches of each sliding window within 
the input sequence independently and is unable to account for the influence of surrounding 
bases and motifs.  
 
Finally, we note that the superior performance of CWM scanning over PWM scanning is highly 
reproducible when evaluated based on independent ChIP-nexus experiments using a different 
Nanog antibody (Extended Data Fig. 3b, last column). Hence, our approach of scanning the 
contribution scores using the CWM (instead of the raw sequence using the PWM) greatly 
reduces the false positive sites while still following the familiar scanning procedure as with 
PWMs. These results highlight the advantages of using profile contribution scores and the 
novel CWM motif representation to identify motif instances associated with ChIP-nexus 
footprints. 
 
Helical motif syntax for Nanog 
Next, we tested whether the ~10.5 bp helical Nanog-Nanog motif syntax discovered by BPNet 
could also be discovered using motif instances from the other methods (HOMER, MEME, 
ChExMix). We note that ChExMix binding site calls also use the ChIP-nexus footprints in 
addition to sequence. We found that the methods showed substantially weaker signals of 
helical periodicity in the Nanog-Nanog inter-motif motif distance histograms across a range of 
distances (Extended Data Fig. 7a). For PWM scanning, the higher false discovery rate of motif 
instances likely attenuates the detection of Nanog's helical periodicity. For ChExMix, we 
observed a substantial depletion of helical periodicity for spacing <40 bp compared to BPNet 
CWM scanning. This depletion at close proximity could be due to two reasons. First, the 
optimized likelihood of ChExMix is non-convex and hence the global optimum might be difficult 
to find and may strongly depend on the initial conditions. Second, the key assumption of 
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ChExMix is that the tag distribution (representing the average profile) associated with a 
specific motif is constant. However, this assumption is an oversimplification since ChIP-nexus 
profiles associated with a motif can change their form in the presence of motifs of other 
cooperatively bound TFs. Altogether, these results demonstrate that compared to previous 
approaches, the BPNet framework provides substantially improved sensitivity for detecting 
subtle, closely-spaced, soft motif syntax since CWM scanning yields more accurate motif 
instances without relying on the measured ChIP-nexus profiles. 

BPNet’s profile regression yields more motifs and more accurate motif instances 
than binary peak classification 
A frequently used approach for training deep learning models is to treat the TF binding 
prediction problem as a binary classification task28,29. In this approach, the training examples 
are sequences extracted from contiguous bins in the genome and the sequence label is 
positive if a TF binding peak overlaps the bin region (and negative otherwise). The purported 
benefits of such a labeling approach are as follows. First, the assay-specific biases may be 
already accounted for in the peak-calling process. Second, the resulting machine learning task 
– binary classification – is well understood. Hence the standard loss function such as binary 
cross-entropy and the standard evaluation metrics such as the area under precision-recall 
curve (auPRC) can be used. However, this coarse-grained binary summarization of the 
binding profiles discards valuable fine-scale information about signal strength and shape of 
the profiles. 
 
To investigate the benefit of training the BPNet model on the base-resolution ChIP-nexus 
profiles compared to lower resolution binary labels, we modified the BPNet architecture and 
replaced the output heads performing profile regression with output heads performing binary 
classification. The new output heads consisted of weighted global average pooling using 
spline transformation30 and a dense layer followed by sigmoid activation. We trained the model 
on 1 kb input sequences sampled every 50 bp across the training chromosomes. Sequences 
were labeled positive if the central 200 bp of the sequence overlapped an IDR-optimal peak. 
The predictive performance on the held-out tuning chromosomes (2, 3 and 4) was 0.25 auPRC 
on average across the 4 TFs after tuning the optimal learning rate (Extended Data Fig. 4a, 
Supplementary Table 2). We also observed that chromosome-wide training of the binary 
classification models took 3 times longer (Extended Data Fig. 4b) than BPNet, which is trained 
only on ChIP-nexus profiles from 147,974 peak regions. To ensure that the dilated 
convolutional layers are also appropriate for binary classification, we also trained and 
evaluated the Basset31 and factorized Basset32 architectures. After tuning the dropout rate with 
random search, we obtained a slightly lower auPRC of 0.24 for both models, suggesting that 
our original architecture with dilated convolutions was also a good fit for binary classification. 
Next, we asked whether the predictive performance of the binary classification model could 
be improved by adding another output head predicting the strand-specific ChIP-nexus profile 
as originally done by BPNet. Indeed, the classification performance increased for all TFs 
yielding an average of 0.31 auPRC (Extended Data Fig. 4a, Supplementary Table 2). We 
conclude that the read profiles indeed provide additional information not captured by the binary 
labels. 
 
We next asked whether the contribution scores of the profile regression model highlight 
additional motifs compared to those obtained from the binary classification model. For the 
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binary models, we computed the DeepLIFT contribution scores for each TF task (pre-sigmoid 
activation) and ran TF-MoDISco with the same parameters in the same regions as previously 
done for BPNet. We clustered the discovered motifs based on their PFM similarity and 
manually assigned motif labels as done in Extended Data Fig. 2d. Using the contribution 
scores of the binary classification model, TF-MoDISco discovered 9 out of 11 main short motifs 
found by the profile regression model (Extended Data Fig. 4c, Supplementary Data 1). The 2 
missed motifs, Oct4 monomer and B-box, are hence not frequently used by the binary model 
to predict the presence or absence of the peak as they might co-occur with other more 
predictive motifs. Interestingly, a higher number of questionable motifs including GC sequence 
composition bias motifs, ambiguous motifs and degenerate or noisy motifs were discovered 
from the contribution scores of the binary classification model. This suggests that the 
contribution scores of the binary classification model are noisier than for the profile regression 
model. Nevertheless, we note that the high reproducibility of the discovered motifs using two 
different model architectures trained on different labeling schemes for the same underlying 
data demonstrates the robustness of TF-MoDISco. 
 
To compare the accuracy of motif instances for the 4 cognate motifs discovered by TF-
MoDISco for both models (Oct4-Sox2, Sox2, Nanog and Klf4), we performed the instance 
ranking analysis on test set sequences, as for PWM scanning methods in Extended Data Fig. 
3b considering sites with strong ChIP-nexus profile heights (footprints) as ‘true’ binding sites. 
The contribution scores of both models yielded a similar recall of Oct4-Sox2 and Sox2 motifs 
supported by strong ChIP-nexus footprints (Extended Data Fig. 4d). Strikingly, the contribution 
scores of motif instances from the BPNet profile model recalled a much higher fraction of 
Nanog motifs with strong footprints as compared to those derived from the binary models 
(Extended Data Fig. 4d). Since the Nanog motif is frequently found in complex homotypic or 
heterotypic syntactic arrangements with Sox2, the ChIP-nexus profile shape contains rich 
information reflecting these motif arrangements. Since BPNet was trained on ChIP-nexus 
profiles directly, it is able to learn these subtle patterns and encode them in the contribution 
scores, thereby resulting in more accurate motif instances even on unseen sequences in the 
test set. Additionally, CWM scanning of contribution scores from the binary classification 
model is comparable to PWM scanning (MEME/FIMO), suggesting that BPNet trained on 
ChIP-nexus profiles is the key for accurate motif maps.  
 
Altogether, we observe that learning to predict the full ChIP-nexus profiles as done by BPNet 
instead of lower resolution binary classes reduces the training time by three fold, increases 
the number of discovered motifs with strong seqlet and biological support, reduces the number 
of questionable motifs and improves the accuracy of the called motif instances. Moreover, the 
profile predicted by BPNet assesses binding at individual motifs, which offers higher resolution 
to study the directionality of TF interactions mediated by soft motif syntax as shown in Fig. 4. 

BPNet can also be used to model and interpret transcription factor ChIP-seq profiles 
The BPNet model together with the interpretation workflow using DeepLIFT and TF-MoDISco 
can be readily applied to any regulatory profiling experiment such as ChIP-seq, since it does 
not make any modeling assumptions specific to ChIP-nexus profiles. The major difference 
between ChIP-seq and ChIP-exo/nexus is the resolution. For ChIP-seq, the 5' ends of the 
reads mapping to either strand within an enriched peak region are dispersed in a 100-200 bp 
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window around the primary binding site (peak summit). In contrast, for ChIP-exo/nexus data, 
the read density is colocalized in the immediate vicinity (+/- 20 bp) of binding events.  
 
To demonstrate that BPNet can also model ChIP-seq profiles, we performed ChIP-seq for 3 
out of 4 previously studied TFs (Oct4, Sox2 and Nanog). We processed the data using the 
ENCODE ChIP-seq pipeline (v 1.3.6) 
https://github.com/ENCODE-DCC/chip-seq-pipeline2/releases/tag/v1.3.6 and generated the 
strand-specific 5' read count tracks as for ChIP-nexus. We then optimized multi-task BPNet 
architectures to predict strand-specific ChIP-seq profiles of the three TFs from their 
corresponding 1 kb sequences at IDR optimal peak regions across all three factors. We used 
the same BPNet architecture for ChIP-seq as for ChIP-nexus and determined optimal hyper-
parameters by varying each hyper-parameter individually while keeping others the same as 
for the ChIP-nexus model (learning rate: 0.05, 0.04, 0.02, 0.01, 0.005, 0.004, 0.002, 0.001, 
0.0005; deconvolution size: 1, 10, 20, 30, 40, 50, 60, 70, 80, 100; number of layers: 1-12; 
profile vs total count loss weight λ: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000). 
We observed that the BPNet model for ChIP-seq overall required the same hyper-parameters 
as for ChIP-nexus. The only hyper-parameter that differed was the increased width (50) of the 
deconvolutional layer (compared to 25 which was optimal for ChIP-nexus). Similar to the ChIP-
nexus control experiment PAtCh-Cap, we used the ChIP-seq input control experiment using 
a non-specific antibody to control for experimental biases (Methods). We also added data 
augmentation (genomic intervals jittered uniformly by [-200, 200] bp with random reverse 
complementation). This is more important when ChIP-seq data are trained on peaks only since 
the shape of the profiles will be fairly constant, hence a constant model can already fit the data 
well. 
 
To gain intuition about the prediction quality of BPNet compared to replicate experiments, we 
investigated the known Zfp281 and Lefty1 enhancers as done before for ChIP-nexus data. 
Since the model evaluation was performed in peak regions, we added data augmentation 
(genomic intervals jittered uniformly by [-400, 400] bp with random reverse complementation) 
to make sure the model does not simply predict the average ChIP-seq signal centered at the 
peak. We observed that the predicted profile shapes significantly de-noise the base-resolution, 
strand-specific 5’-end coverage ChIP-seq profiles. Indeed, the predicted profiles resemble 
smoothed versions of the ChIP-seq 5’-end coverage profiles (averaging sliding window of 
50bp, Extended Data Fig. 9a).  
 
To evaluate the predictive performance of the ChIP-seq BPNet model, we performed a similar 
analysis as for ChIP-nexus with the difference that we assessed the quality of profile shape 
prediction by comparing the similarity of BPNet predictions to the ground truths smoothed 
ChIP-seq profiles on the test set against the similarity of ChIP-seq smoothed profiles between 
replicate experiments using the multinomial log-likelihood. We found that BPNet outperformed 
the smoothed replicate experiments in terms of profile shape prediction on almost all TFs 
except Nanog where both performed similarly (Extended Data Fig. 9b). Consistent with the 
ChIP-nexus models, the total count predictions from the BPNet ChIP-seq model did not 
surpass the concordance between replicate experiments (Extended Data Fig. 9c). As 
previously discussed, this result is expected since the total counts are likely influenced by 
factors besides local DNA sequence that we do not model, such as chromatin context and 
distal interactions with other genomic elements. Altogether, we conclude that BPNet 
generalizes seamlessly to learn accurate models of TF ChIP-seq profiles. 
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Next, we investigated the DeepLIFT profile contribution scores inferred from the ChIP-seq 
BPNet model for all three TFs in the well-known Oct4 enhancer. The contribution scores were 
computed in the exact same manner as for the ChIP-nexus model. Consistent with the 
inferences from the ChIP-nexus model, we found that the contribution scores also precisely 
highlighted the Oct4-Sox2 motif in the center and the Nanog motif on the immediate flanks 
(Extended Data Fig. 9d). Hence, the contribution scores derived from a ChIP-seq BPNet 
model is able to accurately highlight the expected motifs within a well-known enhancer. 
 
We then investigated the globally predictive motifs learned by the ChIP-seq BPNet model. We 
used TF-MoDISco with the same hyper-parameters as for the ChIP-nexus model. To allow for 
unbiased comparison of the motifs obtain from ChIP-seq and ChIP-nexus BPNet models, we 
retrained additional models on ChIP-nexus and ChIP-seq data using a common set of peak 
regions that were found by either of the two assays i.e. union of ChIP-nexus and ChIP-seq 
peaks, for the three TFs (Oct4, Sox2, Nanog). We further restricted model interpretation to a 
common set of peak regions found by both assays i.e. intersection of ChIP-nexus and ChIP-
seq peaks for each TF.  
 
Additionally, to evaluate the benefits of a profile regression model for ChIP-seq, we trained a 
binary classification model on ChIP-seq data in the same manner as done before for ChIP-
nexus data.  
 
We observed that TF-MoDISco applied to all the different types of ChIP-seq BPNet models 
discovered the majority of the expected motifs. However, the ChIP-seq models trained on 
binary labels found a few additional motifs that appear to be spurious and lacking clear 
biological significance (Extended Data Fig. 10a, Supplementary Data 1). These results show 
that ChIP-seq BPNet profile models perform comparably to ChIP-nexus BPNet profile models 
in terms of motif discovery with fewer spurious discovered motifs compared to models trained 
on binary labels. 
 
To evaluate the quality of the CWM motif instances obtained by the four models, we first 
analyzed whether the helical spacings between Nanog motifs were discovered with the ChIP-
seq profile models and found this indeed to be the case (Extended Data Fig. 10b). We then 
used the same approach as in Extended Data Fig. 3b and Extended Data Fig. 4d in which we 
compared the ranked motif instances against co-localized strong ChIP-nexus footprints for 
each TF. We observed that ChIP-nexus BPNet profile models recalled a higher fraction of 
motif instances with strong ChIP-nexus footprints for the Nanog motif compared to ChIP-seq 
BPNet models (Extended Data Fig. 10c). Both models performed similarly well for Oct4-Sox2 
and Sox2 motifs. Additionally, ChIP-seq BPNet profile models yielded more accurate CWM 
motif instances than ChIP-seq binary classification models trained on the same data as well 
PWM based instance calling (Extended Data Fig. 10d). In conclusion, with respect to accuracy 
of motif instances, the ChIP-nexus BPNet profile models outperform ChIP-seq BPNet profile 
models, which outperform ChIP-seq binary models. Hence, modeling profiles directly and 
improved resolution of the ChIP-nexus profiles collectively contribute to improved motif 
instance identification.  
 
Altogether, these results show that the BPNet framework, which includes BPNet training, 
inference of DeepLIFT contribution scores, CWM motif discovery with TF-MoDISco, and motif 
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instance identification via CWM scanning, can be readily applied to ChIP-seq data. These 
results were obtained with very minor hyper-parameter adjustments while explicitly controlling 
for assay specific biases. It should be possible to easily adapt and apply the BPNet workflow 
to any other regulatory profiling assays such as CUT&RUN, ATAC-seq and DNase-seq. 

Supplementary Methods 

BPNet architecture 

BPNet architecture (without bias correction) can be implemented in the Keras framework 
(v2.2.4) as follows: 
  
import keras; import keras.layers as kl; from bpnet.losses import multinomial_nll 
tasks = ['Oct4', 'Sox2', 'Nanog', 'Klf4'] 
 
# body 
input = kl.Input(shape=(1000, 4)) 
x = kl.Conv1D(64, kernel_size=25, 
              padding='same', activation='relu')(input) 
for i in range(1, 10): 
    conv_x = kl.Conv1D(64, kernel_size=3, padding='same', 
                       activation='relu', dilation_rate=2**i)(x) 
    x = kl.add([conv_x, x]) 
bottleneck = x 
 
# heads 
outputs = [] 
for task in tasks: 
    # profile shape head 
    px = kl.Reshape((-1, 1, 64))(bottleneck) 
    px = kl.Conv2DTranspose(2, kernel_size=(25, 1), padding='same')(px) 
    outputs.append(kl.Reshape((-1, 2))(px)) 
    # total counts head 
    cx = kl.GlobalAvgPool1D()(bottleneck) 
    outputs.append(kl.Dense(2)(cx)) 
 
model = keras.models.Model([input], outputs) 
model.compile(keras.optimizers.Adam(lr=0.004), 
              loss=[multinomial_nll, 'mse'] * len(tasks), 
              loss_weights=[1, 10] * len(tasks)) 

Relationship between the Poisson log-likelihood, mean-squared error and 
multinomial log likelihood 

We start by writing down the negative log-likelihood for the Multinomial distribution. Let L be 
the sequence length, N the total number of events (i.e. total number of read counts in the 
region) and pi the probability of obtaining the outcome i (e.g. the read gets aligned to position 

i). Then, the negative log likelihood can be written as 
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Note that we gathered all the terms independent of  into the constant M. Let's assume 
the read counts at each genomic location ki are distributed according to the Poisson 
distribution. The Poisson log likelihood for the sequence region of length L can be written as 

 

 
 

If we replace  with , where  is the predicted number of total counts and use 

, , we obtain: 

 
 

We observe that the second term equals to the multinomial negative log-likelihood. If we set 

, , and perform a Taylor expansion 

) 

up to the squared term for variable  around , we obtain: 

 
This means that we can approximate the Poisson log-likelihood by a sum of mean-squared 

errors and the multinomial loss function where the predicted log of total counts  is close 

to the true total counts : 
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If , the multinomial loss and the mean squared error loss are balanced according to the 
Poisson log-likelihood. 

Performance evaluation of profile predictions 

ChIP-nexus profiles contain TF footprints characterized by local spikes with high read counts 
surrounding a valley (putative TF binding site) with low read counts. Typical measures of 
similarity such as Pearson or Spearman correlation are not well suited to these types of 
profiles. To quantify the ability of the model to accurately localize footprint positions, we use a 
binary classification formulation to evaluate how well the model can distinguish positions with 
high read counts from lower read counts within each ChIP-nexus profile in the test set regions. 
Positions with more than 1.5% of the total number of reads in each 1 kb test set region were 
labeled as belonging to the positive class. Positions with less than 0.5% of total read counts 
were labeled as belonging to the negative class. These two thresholds were manually 
determined by visually inspecting the ChIP-nexus profiles in peak regions from the training 
chromosomes. The number of negative examples far outnumber the number of positive 
examples. Hence, we used the area under the Precision-Recall curve (auPRC) to evaluate 
the performance of the predicted read probability profiles relative to these binary labels. To 
evaluate the predictive performance at lower resolutions, we applied auPRC on binary labels 
and the predicted profile probabilities summarized in 2-10 bp contiguous bins as follows: a bin 
was labeled as positive if there was at least one position in the bin with a positive label. If all 
the labels in the bin were negative, the bin was labeled as negative. Otherwise, the bin was 
labeled as ambiguous. For the predicted profile probabilities, the maximum value in the bin 
was used. 
 
We used profiles sampled from replicate experiments to compute a corresponding upper 
bound for the above-mentioned profile evaluation for each TF. For each TF, replicate 
experiments were divided into two groups with approximately equal numbers of sequencing 
reads. Read count profiles from one group were used as ground truth and the read counts 
profiles from the other group were treated as a predictor similar to BPNet. The roles of the 
replicate groups were then swapped, and the final predictive performance was averaged 
across both scenarios. Random baseline was obtained by using shuffled regions for model 
predictions. 
 
We have used two further measures that evaluate not just spikes in ChIP-nexus data, but the 
profile similarity across the entire profile (Extended Data Fig. 1b). The first is the Jensen-
Shannon (JS) divergence between the observed and predicted profile probability distributions. 
We note that JS divergence is very sensitive to sparse coverage in observed profiles. Positions 
with 0 observed reads end up with a 0 probability value, which is simply an artifact of low 
coverage. The models predict expected profiles (implicit imputation) and the multinomial 
probabilities are almost never 0. Hence, the observed profiles need to be smoothed (via 
pseudocounts or via a moving average window) to obtain stable JS divergence estimates for 
similarity between replicate experiments. We tested both options and found that using a 50 bp 
moving average window gave the best results for replicate concordance (which we use an 
upper bound for the model’s performance). Note that we do not smooth the ground truth 
observed profiles or the model predicted profiles before computing JS divergence. We only 
use smoothing when comparing replicates to each other i.e. we smooth the profiles of one 

1a =
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replicate and use these as “predictors” of the unsmoothed profiles of the other replicate. This 
is analogous to comparing the expected predicted profiles (implicit smoothing) from the model 
to the unsmoothed observed signal.  
 
The second measure is the multinomial negative log-likelihood (M-NLL) already used as the 
profile loss function which evaluates the likelihood that the observed count profile could have 
been generated by the multinomial probabilities learned by the model. Unlike the JS 
divergence, the M-NLL explicitly accounts for observed 0s due to low coverage in a principled 
manner. Hence, no adjustments need to be made to the observed profiles. 

5-fold cross validation for analysis of robustness of BPNet models 

To evaluate the reproducibility and robustness of our approach, we trained five BPNet models 
initialized with different random seeds on sequences from five different chromosome sets or 
folds. For each fold, we held-out the following validation and test set chromosomes: 
 

 Validation chr Test chr 

Fold 1 1,8,9 2,3,4 

Fold 2 2,3,4 10,11,12,13 

Fold 3 10,11,12,13 14,15,16,17,18 

Fold 4 14,15,16,17,18 19,5,6,7 

Fold 5 19,5,6,7 1,8,9 
 

Fold 1 uses the exact same validation and test chromosomes as the original BPNet. We used 
the exact same hyper-parameters as for the original BPNet model. TF-MoDISco and motif 
instance calling based on CWM scanning were run on the contribution scores for each of the 
five models. For each fold, the motifs most similar to the original 11 core motifs (Fig. 3c) were 
determined by using the continuous Jaccard similarity metric for the PFM scaled by 
information content. Figs. 5c, 6e-h and 6i-k were re-generated for all 5 BPNet models trained 
on different chromosome folds and their corresponding motif instances. 

Model prediction analysis in unmappable regions 

The mappability of the mm10 reference genome with k-mers of length 24, 36, 50, and 100 bp 
as previously generated33 were downloaded from 
https://drive.google.com/drive/folders/0B1fks4X_Jjn5NDJjaE9TUmxrR28. We then classified 
positions from the positive strand in the ChIP-nexus peaks into three groups: unmappable, 
mappable and ambiguous. For unmappable regions, we considered those that were not 
uniquely mapped by any k-mer of length up to 100 bp (value=0 in the provided uint8). For 
mappable positions, we considered those that were uniquely mapped with k-mers of lengths 
up to including 50 bp (value>0 and value<=50 in the provided uint8). The remaining positions 
(~1%) were considered ambiguous and were excluded from the analysis. These positions 
were namely uniquely mappable by k-mers of length between 51 and 100 bp, which may or 
may not be longer than the used ChIP-nexus reads which were 50 bp or 75 bp long. 
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Motif discovery using TF-MoDISco 

The TF-MoDISco algorithm34 consists of three stages. In the first stage, the total contribution 
in sliding windows of length 21 (sliding_window_size) is computed, both for contribution 
scores from the real sequences and for contribution scores on the shuffled sequences. The 
distribution of sliding window scores on the shuffled sequences is used to define a 'null 
distribution' against which sliding windows from the real sequences that pass a FDR threshold 
of 0.01 (target_seqlet_fdr) are identified. Sliding windows are expanded on either side 
by 10 bp (flank_size) are selected in such a way that no two sliding windows overlap by 
more than 50%. The segments underlying these expanded sliding windows are termed 
'seqlets', and are provided to the next stage for clustering. A total of 145,748 non-overlapping 
seqlets were identified. We limited the total number of seqlets to 50,000 for each run of TF-
MoDISco in order to always satisfy computational memory constraints (250 GB). 
 
In the second stage, seqlets are clustered into motifs. First, a similarity for each pair of seqlets 
is computed using the seqlet contribution scores. For a given pair of seqlets, different possible 
alignments of the seqlets are considered, and for every alignment, the similarity of the 
contribution scores is calculated using a correlation-like metric called continuous Jaccard 
similarity34. The best similarity across all alignments is then taken to be the similarity of the 
seqlet pair. The similarities of the seqlets are provided to a clustering algorithm, after 
transforming the similarities in a way that grants robustness to the fact that different clusters 
can have different densities. The clusters are found using a Louvain community detection 
algorithm35 that automatically determines the number of clusters by optimizing graph 
modularity. 
 
After the clusters have been identified, seqlets within a cluster are aligned to each other, and 
the coordinates of the seqlets are expanded to fill out any overhangs in the alignment. This 
kind of seqlet expansion makes it possible to discover motifs that are longer than the sliding 
window used for seqlet identification in the first stage. A Position Frequency Matrix (PFM) and 
a Contribution Weight Matrix (CWM) are computed from the aligned seqlets by averaging the 
base frequencies and the contribution scores respectively. The seqlet coordinates are then 
re-centered such that the region of highest contribution falls near the middle of the CWM. 
Because these seqlet coordinates can be slightly different from the original seqlet coordinates, 
the second stage computation is run for a second time using the seqlets with the new 
coordinates, for added robustness. 
 
In the third and final stage, heuristics are applied to postprocess the motifs using the default 
TF-MoDISco settings for version 0.5.1.1. Clusters appearing to consist of two distinct motifs 
are split apart, following which clusters with highly similar motifs are iteratively merged. After 
all merging is complete, any clusters with fewer than 60 seqlets are treated as noise and 
disbanded, with their seqlets reassigned to larger clusters. Finally, motifs are expanded to the 
length of 70 bp and then trimmed down to their final lengths by removing flanking positions 
with an information content (IC) of less than 8% of the information of the base with the maximal 
information content in the motif. Motifs supported by less than 100 seqlets or with an 
information content smaller than 4 bits were discarded. The PFM information content is 
defined as: 
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where pi,j is the PFM value at position i and base j and bj is the background base probability36. 
We used the following background base probabilities: A=0.27, C=0.23, G=0.23, T=0.27. 

Transposable element analysis 

RepeatMasker annotations for mm10 were obtained from 
http://www.repeatmasker.org/genomes/mm10/RepeatMasker-rm405-
db20140131/mm10.fa.out.gz and used to compute the overlap of seqlets with transposable 
elements (TEs). A seqlet was considered to overlap a TE if it was fully contained within at least 
one element defined in RepeatMasker annotation. Kimura 2-parameter distance37 between 
the seqlet sequence and the consensus sequence of the motif was used to sort the seqlets in 
Extended Data Fig. 5a by mutation counts. This distance metric was re-implemented in Python 
and is equivalent to dist.dna function from R's APE package with the model='K80' 
parameter (https://www.rdocumentation.org/packages/ape/versions/5.2/topics/dist.dna). 

Analysis of strict spacing constraints for motif pairs 

We obtained and filtered the 11 representative motif instances as described in the previous 
section using CWM scanning. We discarded Sox2 sites overlapping the Oct4-Sox2 motif and 
removed palindromic motif pair matches. Motif pairs were considered when spaced center-to-
center between 6 bp and 100 bp. Each motif pair was checked for overlap with RepeatMasker-
annotated ERVK, ERVL, ERVL-MaLR or ERV1 genomic regions. For each motif pair, 
histograms were generated comparing the inter-motif distance between each motif pair 
instance and its ERV overlapping class. The frequency of motif inter-motif distance relative to 
both the motif pair and the ERV overlapping class was computed for motif pairs that occurred 
more than 500 times across the genome. 

Validation of discovered motifs 

Protein structure visualizations on composite motifs 
The structure of Sox2 and Oct1 bound to DNA in Fig. 3a was rendered in VMD38 using 
secondary structure information from STRIDE39 and surfaces from SURF40, based on the NMR 
structure 1O4X41. This Sox2-Oct1-DNA model has been used as a homology model to build 
the Oct4-Sox2-DNA complex41, and is therefore representative of the structure of that 
complex, though coordinates for that model have not been made available.  
 
Nanog 
TF-MoDISco returned three Nanog motifs with sharp and specific Nanog binding profiles. 
While the footprints are similar across these Nanog motifs, there were also some differences 
(Fig. 3b), raising the possibility that Nanog binds with a partner. Since Sox2 had previously 
been reported to be a Nanog binding partner characterized by a Nanog-Sox heterodimer motif 
(RMWMAATWNCATTSW)12, the median ChIP-nexus signal, BPNet predicted signal and 
profile contribution scores were measured for each TF across the CWM-mapped Oct4-Sox2, 
Sox2, Nanog and Klf4 instances, as well as PWM-mapped putative Nanog-Sox heterodimer 
motifs (Supplementary Fig. 8a). Nanog-Sox heterodimer motifs were found by scanning the 
Nanog-Sox heterodimer PWM12 across IDR-optimal peak regions used as inputs for BPNet. 
Additionally, Pbx is a common partner for homeodomain transcription factors and has a 
reported binding motif with a TCA core that is similar to the identified Nanog motifs. In order 
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to test whether Pbx shows specific footprints on any of the Nanog motifs, we generated Pbx 
ChIP-nexus data in mouse ESCs. However, Pbx did not show binding on the Nanog motifs 
(Supplementary Fig. 8b). In contrast, Pbx showed strong footprints on its reported motif (1,000 
top-scoring genomic PWM-matches to the PH0134.1 Pbx motif from JASPAR13), showing that 
the Pbx ChIP-nexus data are of high quality. We also show Sox2 binding as a control, but 
found no specific footprints of Sox2 on the Nanog motifs (Supplementary Fig. 8c). 
 
Zic3 and Essrb 
TF-MoDISco returned three short motifs not matching Oct4, Sox2, Nanog or Klf4 binding 
motifs. Two of these motifs resembled the Zic3 and Esrrb motifs as reported in the literature. 
To confirm their identity, we performed Zic3 and Esrrb ChIP-nexus experiments and plotted 
their average binding across the putative Zic3 and Esrrb motif instances discovered by TF-
MoDISco and CWM scanning. In both cases, this confirmed their identity. As a control, we 
also plotted Esrrb binding across the 1,000 top-scoring genomic PWM-matches to the 
MA0141.1 Esrrb motif from JASPAR13 and observed the same binding footprint.  
 
TFIIIC B-box and tRNAs  
One of the three short motifs did not appear to be a known TF motif important in ESCs. We 
queried the TRANSFAC database42 using a motif identifier tool called TOMTOM from the 
MEME Suite23. This revealed a match with sequences associated with TFIIIC subunits. Upon 
further inspection, this motif was revealed to be the TFIIIC B-box, a binding site that contributes 
to the recruitment of TFIIIC binding43, thus is associated with Pol III transcription. Consistent 
with this, we found that the TFIIIC B-box motif we discovered frequently mapped across tRNA 
genes in the mouse genome. The tRNA genes were obtained from the tRNAscan-SE 
predictions stored in GtRNAdb 2.0, release 17.144  
(http://gtrnadb.ucsc.edu/GtRNAdb_archives/release17/genomes/eukaryota/Mmusc10/mm10
-tRNAs.tar.gz). We then classified the B-box motifs based on their gene overlap and computed 
the copy number of the tRNAs overlapping with the mapped B-box motif instances based on 
amino acid anti-codons, separating methionine (Met) and activated methionine (iMet) as two 
separate amino acid classes.  

Smooth curve fitting in Fig. 5i-k 

Software package pygam version 0.7.1 (https://github.com/dswah/pyGAM) was used to fit 
the generalized additive model (GAM) with 50 B-spline basis functions using the 
pygam.LinearGAM class to the data. Optimal regularization strength `lamb` was determined 
using Generalized cross validation (GCV) by searching over the following values: [10, 32, 
100, 326, 1000, 3162, 10000, 31622, 100000, 316227, 1000000]. Confidence intervals were 
computed by pygam.LinearGAM.confidence_intervals, which uses the confidence intervals 
of the linear fit coefficients to estimate the confidence bands of the fitted curve. 

Periodicity analysis using Fourier transform 

For each TF-MoDISCo motif of a TF, we identified the locations and sequences containing all 
the seqlets of the motif. We extracted base-resolution DeepLIFT profile contribution scores 
(w.r.t. to the TF’s profile prediction) across 200 bp sequence windows centered at each of the 
seqlets. We computed the average contribution score at each base across all the extracted 
contribution score profiles. We subtracted a smoothed version of the average contribution 
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score (smoothing window of size 10) in order to correct for overall higher contribution scores 
in the center. We call this the corrected average contribution score profile of a motif. 
 
For each motif, we computed Discrete Fourier transforms of the corrected average contribution 
score profile using the Numpy (v1.16.1) function numpy.fft.rfft. Power spectrum was 
obtained by taking the squared absolute value of the returned Fourier coefficients. The finite 
length of the corrected average contribution score profiles, results in discrete frequency values 
from the Fourier transform. We used half of the difference between adjacent frequency values 
as an estimate of the error-bars (uncertainty) around the discrete frequency values value (Fig. 
5c).  

In-silico motif interaction analysis 

We studied the interaction between the following motifs discovered by TF-MoDISco: 
- Oct4-Sox2 (pattern 0 from Oct4, consensus=TTTGCATAACAA),  
- Sox2 (pattern 1 from Sox2, consensus=GAACAATGG),  
- Nanog (pattern 1 from Nanog, consensus=AGCCATCA),  
- Klf4 (pattern 0 from Klf4, consensus=CCACGCCC). 

We considered motif instance pairs (A, B) spaced at some distance d <160 bp and compared 
BPNet ChIP-nexus profile predictions between 4 cases: where either Motif A or Motif B was 
replaced by a random sequence, where both were replaced by a random sequence or where 
both were left intact. Motif instance pairs were either simulated in synthetic sequences or were 
detected by CWM scanning in sequences underlying ChIP-nexus peaks. 
 
Synthetic sequences 
For synthetic sequences, we first created 128 random background sequences of 1 kb in length 
by sampling the base at each position with equal probability. Next, we replaced the central 
bases by the consensus sequence of Motif A and similarly inserted Motif B d bases 
downstream of Motif A (d is the distance between motif centers). We used BPNet to predict 
the strand-specific ChIP-nexus profile for the primary TF of Motif A (e.g. Oct4 for the Oct4-
Sox2 Motif and Nanog for the Nanog motif). We averaged the predictions across the 128 
random background sequences to obtain the profile PAB. We repeated the same procedure by 
i) inserting only the Motif A in the center (PA), ii) inserting only the Motif B d-bases downstream 
of the center, and iii) not inserting any Motif and hence only averaging the predictions across 
random sequences (PØ). We used the predicted profile PA to determine the predicted summit 
(maximum) location within 35 bp of the Motif A center for each strand. The strand-specific 
summit location at Motif A was then used to determine the profile height in all 4 scenarios 
averaged across the two strands. We denote the average predicted profile summit height of 
the 4 different predicted profiles (PA, PB, PAB and PØ) by hA, hB, hAB, and hØ correspondingly.  
 
We define the corrected binding fold change by quantifying the influence of Motif B on Motif A 
as: (hAB - (hB - hØ)) / hA. 
 
A binding fold-change of 1 indicates that profile summit height of TF A is the same whether or 
not Motif B is present in the vicinity of Motif A. If the fold-change is higher than one, then the 
profile summit of TF A is higher compared to the case where Motif B is absent. The second 
term in the numerator (hB - hØ) corrects for predicted signal of TF A found near Motif B 
(“shoulder” effects). For homotypic motif interactions, a shoulder is present because ChIP-
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nexus motif footprints have a low decaying signal surrounding the summits (Fig. 3e). For 
heterotypic motif interactions, where the TF bound to Motif B is different from TF A, a shoulder 
may nevertheless be present if TF A is predicted to show an indirect binding footprint at Motif 
B (e.g. Nanog at the Sox2 motif, Fig. 3e). By correcting for shoulder effects, we make sure 
that the measured interaction is not due to the indirect binding footprint at the nearby motif 
(Supplementary Fig. S10a). 
 
We performed the analysis for all motif pairs, strand orientations, and possible inter-motif 
distances ranging from 11 bp to 160 bp (Supplementary Fig. S10b). 
 
Genomic sequences 
To compute the corrected binding fold-change of motif interactions in genomic sequences, we 
first obtained motifs instance locations in 1 kb ChIP-nexus peak regions using CWM scanning. 
We discarded motif instances from duplicated peak regions overlapping other peak regions 
by more than 200 bp as well as motif instances overlapping TEs (discovered by TF-MoDISco 
and mapped back to the genome using CWM scanning). Also, Sox2 motif instances 
overlapping the Oct4-Sox2 motif were discarded. For each motif pair, 4 model predictions 
were made: 
- PAB: the reference sequence of the whole interval in which the motifs were present 
- PA: motif instance B replaced by random sequence 
- PB: motif instance A replaced by random sequence 
- PØ: motif instances A and B replaced with random sequence 
 
We computed the profile heights at motif A profile summit locations in the same manner as for 
the synthetic sequences yielding 4 profile heights: hA, hB, hAB and hØ. We added "pseudo 
counts" defined as the 20th percentile of the considered quantity to the shoulder-corrected 
profile height of the reference sequence: hAB - (hB - hØ) + PCAB as well as the profile height of 
the A-only sequence: hA + PCA. Next, we kept only the motif pairs where the shoulder-
corrected profile height of the motif was in the top 20% for both motifs. This ensured that only 
motif pairs showing a footprint were used. Finally the corrected binding fold-change was 
computed for each motif instance pair as: 
 

(hAB - (hB - hØ) + PCAB) / (hA + PCA) . 
 
We note that there are three main differences between the synthetic and genomic sequences. 
First, in genomic sequences, the background sequences were not random and may contain 
other motifs. Second, the "perfect" consensus sequence was used for injecting motifs in 
synthetic sequences, whereas for genomic sequences the motif instance sequences vary and 
do not necessarily match the consensus. Third, the distribution of inter-motif distances in 
genomic sequences is not perfectly uniform as for the synthetic case, hence some inter-motif 
distances might be under-represented. 
 
Co-occurrence likelihood of motif pairs 
We obtained and filtered motif instances as described in the previous section using CWM 
scanning. We discarded Sox2 sites overlapping the Oct4-Sox2 motif. To compute whether 
Motif A is located close to Motif B more frequently than expected by chance, we counted i) the 
number of times a motif instance A is close to motif instance B and ii) the number of times 
motif instance A is close to motif instance B if we shuffle all motif instances between peaks 
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while maintaining the relative location within the peak. We constructed the following 2-by-2 
contingency matrix cm: 

 
and applied the Pearson’s Chi-square test (chi2_contingency from scipy.stats) to obtain the 
p-value quantifying whether the odds-ratios (A close vs not close to B) between the observed 
and shuffled motif instances are significantly different. We note that Pearson’s Chi-square test 
is by definition one-sided. Finally, we use the odds-ratio to visualize whether A is closer to B 
more frequently than expected by chance:  
 

 

Benchmarking alternative methods 

ChExMix 
ChExMix15,22 is a state-of-the-art motif discovery and TF binding event calling method for ChIP-
exo and ChIP-nexus data. ChExMix v0.3 with default parameters was run for each TF on the 
pooled BAM file containing reads of all the replicates for the corresponding TF. The same 
blacklisted regions (--exclude) as for peak calling in the ChIP-nexus pipeline were used. The 
following mm10 background file (--back) was used 
(http://lugh.bmb.psu.edu/software/chexmix/backgrounds/mouse.back). 
 
HOMER 
HOMER v227 was run on the 1 kb peak regions for each of the 4 TFs profiled by ChIP-nexus 
with the findMotifsGenome.pl command with the following command line arguments: -len 12 
-size 200. These specify the motif length (12) and the size of the considered regions around 
the peak summits (200 bp). Motif instances in the ChIP-nexus peak regions were determined 
using the findMotifsGenome.pl with the default arguments. 
 
MEME / FIMO  
MEME23–26 version 5.0.2 was run on sequences extracted from the central 50 bp of the peak 
summits for the top 500 peaks. Command line arguments as specified by the MEMESuite 
webtool were used: -dna -revcomp -mod=anr -nmotifs=3 -minw=6 -maxw=50 -
objfun=classic -markov_order=0. FIMO version 5.0.2 was used to determine the motif 
instances in the mm10 reference genome. We used the defaults for all parameters except for 
a less stringent p-value threshold of 0.001 (the default is 0.0001). 
 
PWM-ChExMix and PWM-BPNet 
Motif instances were also determined for PWMs discovered by ChExMix and BPNet. PWM 
score was computed using the numpy correlate function used to compute the dot-product 
score between the PWM and the one-hot-encoded DNA sequence. The following background 
probabilities were used to convert the PFM to PWM: A=0.27, C=0.23, G=0.23, T=0.27. 
 
BPNet-augm 
We used a sequence jittering approach to control for any potential implicit biases in the CWM 
scanning due to the colocalization of the summits of the ChIP-nexus profiles with the center 
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of the input sequences used to train BPNet. For each of the original 1 kb peak regions in the 
test set, the predicted ChIP-nexus profiles were used to record the position of the predicted 
maxima (summit). Note that we never use the experimentally measured ChIP-nexus profiles. 
For each original 1 kb sequence, we obtained a jittered version by randomly selecting a 
position within +/- 200 bp of the original predicted summit and extracting the 1 kb sequence 
centered at this jittered center. We then used the model to infer base-resolution DeepLIFT 
profile contribution scores for the jittered sequence. We then scanned these contribution 
scores of jittered sequences with the CWMs.  
 
Evaluation of validity of motif instances using ChIP-nexus profile height 
We developed an approach to evaluate the validity of motif instances obtained from different 
motif discovery methods (TF-MoDISCo, MEME/FIMO, HOMER, ChExMix) and instance 
calling methods (CWM vs PWM scanning) in the absence of a ground truth set of motif 
instances. We expect true bound motif instances to exhibit colocalized ChIP-nexus footprints. 
Hence, we used the strength of the ChIP-nexus signal in the immediate vicinity of motif 
instances (as described below) as a surrogate measure of validity of motif instances. For all 
the methods, we removed all Sox2 instances overlapping the Oct4-Sox2 motifs. We also 
performed separate sets of analyses for motif instances located within +/- 100 bp and +/- 500 
bp of the ChIP-nexus peak summits.  
 
Given a set of motif instances of a motif (from each of the methods), we extracted the 
measured ChIP-nexus profiles centered at each motif instance. We computed an aggregate 
ChIP-nexus footprint of the motif by averaging the ChIP-nexus profile read counts (5' end 
positions) at each position across all motif instances. We recorded the distance of the maxima 
of the aggregate footprint on each of the strands from the center (where the motif instances 
are located). We call these ‘reference summit positions’ for the motif (Supplementary Fig. 10a). 
We then compute the ‘ChIP-nexus profile height’ of each motif instance as the total number of 
ChIP-nexus read 5’ ends aligning to the reference footprint summit offset positions on both 
strands around the motif instance. It is important to note that we only compare ChIP-nexus 
profile height scores for motif instances from different methods within test set sequences. 
Using only the test set sequences ensures that BPNet derived motif instances are not implicitly 
using information from the measured ChIP-nexus profiles. 
 
For each motif, a motif instance is considered to be supported by a ChIP-nexus footprint if its 
‘ChIP-nexus profile height’ is greater than a predefined threshold. We selected this threshold 
to be the 90th percentile of the ChIP-nexus footprint height distribution over the motif instances 
in the test chromosome called by CWM scanning on BPNet contribution scores. This stringent 
threshold minimizes cross-talk from ChIP-nexus signal originating from nearby motif instances 
since the ChIP-nexus footprint flanks have typically 10 times lower values than the summit 
itself. 

Analysis of ATAC-seq after induced depletion of Oct4 and Sox2 

ATAC-seq data processing 
Friman et al.11 profiled chromatin accessibility via ATAC-seq in mouse ESCs before and after 
induced depletion of Oct4 and Sox2. We downloaded the corresponding paired-end ATAC-
seq FASTQ files for both replicates of the Sox2 26h (ON & OFF) and the Oct4 S2iL (ON & 
OFF) from GSE13468011. We processed the ATAC-seq data using the ENCODE ATAC-seq 
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pipeline (v1.5.3) at https://github.com/ENCODE-DCC/atac-seq-pipeline. We trimmed 
adapters from the reads in the FASTQ files using cutadapt (v1.9.1) with parameters -e 0.1 
-m 5 45. Next, the trimmed reads were aligned to the mm10 reference genome assembly with 
Bowtie2 (v2.2.6)46,47 using the parameters -X2000 --mm -k 5 (report up to 5 distinct, valid 
alignments). Mapping stats were computed using SAMtools flagstat (v1.2) 48. Reads were 
filtered using SAMtools v1.7 view to remove unmapped reads and mates, non-primary 
alignments, reads failing platform or vendor quality checks, and PCR or optical duplicates (-F 
1804) marked using Picard v1.126 MarkDuplicates. Reads mapping to more than 4 locations 
were discarded. For the remaining reads, the alignment with the best score is retained. The 
final filtered BAM file was converted to tagAlign format (BED 3+3) using bedtools `bamtobed` 
(v2.26)49. 
 
Peaks were called using MACS2 (v2.1.1.20160309) by extending 5’-ends of reads on each 
strand using a 73 bp window (±36 bp) and then computing coverage of extended reads across 
both strands (shift=-36, extsize=73). Peak calling was performed on filtered, aligned 
reads from each replicate using a relaxed p-value threshold of 0.01 and retaining the top 
500,000 peaks as described50. Relaxed peak calls were similarly performed on pseudo-
replicates, which were obtained by pooling filtered, aligned reads from all replicates for each 
sample and randomly splitting the pooled reads into two balanced pseudo-replicates. We 
identified two types of reproducible peaks. First, ‘naive overlap peaks’ were defined as relaxed 
peaks obtained from pooled reads that overlapped relaxed peaks from both true replicates or 
both pooled-pseudoreplicates. Furthermore, we used the Irreproducible Discovery Rate (IDR) 
framework to obtain more stringent, rank consistent, reproducible peaks across the true-
replicates and pseudo-replicates51. The larger of these two sets of IDR peaks (in terms of 
number of peaks) was defined as the “IDR optimal set” of peaks. Peaks overlapping the 
blacklisted regions from https://www.encodeproject.org/files/ENCFF547MET/ were excluded. 
 
Models for predicting differential ATAC-seq from derived types of sequence features 
The Sox2 26h (ON / OFF) ATAC-seq sample and the Oct4 S2iL (ON / OFF) samples were 
selected from GSE13468011 to compute the differential ATAC-seq signal (log fold-change) 

upon the depletion of Oct4 or Sox2 in each of the 1 kb ChIP-nexus peaks. Let represent 
the number of ATAC-seq 5' read ends aligned to the i-th ChIP-nexus peak 1 kb region when 

Sox2 (TF, not motif) has been depleted and  when Sox2 has not been depleted. Let 

 represent the 10th percentile of the  distribution across all i. We define the 
differential ATAC-seq log-fold change signal as follows: 

. 
For each of the depletion experiments, we trained separate linear models (LinearRegression 
from scikit-learn version 0.20.1) to predict the differential ATAC-seq log fold change signal at 
specific regions based on two different sets of sequence features derived from the 
corresponding 1 kb input DNA sequences. We restricted to regions corresponding to ChIP-
nexus peaks of the four TFs that also overlapped IDR optimal ATAC-seq peaks from the wild-
type (unperturbed) condition. We used the same train/test split by chromosomes as for the 
original BPNet training. Regions from test set chromosomes 1, 8 and 9 were used to evaluate 
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the performance of the model. Regions from validation/tuning set chromosomes 2, 3 and 4 
were not used. Regions from the remaining chromosomes were used to train the models. We 
evaluated the performance of the models using the Pearson and Spearman correlation 
metrics. 
 
The first set of sequence features represent the complete sequence representation learned 
by the BPNet model trained on ChIP-nexus profiles of Oct4, Sox2, Nanog and Klf4. For each 
1 kb input sequence, we computed the bottleneck activation features from the original BPNet 
model averaged across the spatial axis followed by a log transformation yielding 64 features. 
 
The second set of features were derived from motif instances mapped to the 1 kb regions. For 
each 1 kb input sequence, we counted the number of motif instances of each of the 11 main 
TF-MoDISCo motifs. For each motif, we also computed the mean, maximum and sum of the 
motif match scores (PWM log odds) across all motif instances in the input sequence. We thus 
obtained a total of 44 sequence features. If no motif instances were mapped to a region, we 
set all the feature values for that motif to 0. We computed these features for motif instances 
mapped by BPNet and all other methods described in the previous section (i.e. ChExMix, 
MEME/FIMO, and HOMER). 
 
Overlap with motif instances from different methods 
Friman et al.11 classified differentially accessible states via peak calling and differential 
enrichment analysis between the ON and OFF ATAC-seq experiments for Oct4 and Sox2. 
This yielded regions annotated as Oct4-dependent (OD), Sox2-dependent (SD), or Co-
dependent (CD), which we downloaded from GSE134680. We then collected the Oct4-Sox2 
and Sox2 motif instance sets mapped by BPNet, MEME/FIMO and HOMER as described 
above. For each motif set, we removed any Sox2 motif instance that overlapped with an Oct4-
Sox2 motif instance. Next, we ranked each motif instance in decreasing order. BPNet motif 
instances were ranked by the weighted contribution scores. MEME/FIMO and HOMER motif 
instances were ranked by their respective motif match scores. We computed the cumulative 
overlap fraction across each rank step for OD, SD, and CD regions using the following 
equation:  

. 
Given a ranked set of motif instances m of length N and a set of differentially accessible 
regions D (OD, SD, or CD), we counted the overlap occurrences, up to rank i. We then 
obtained the overlap rate by dividing by the differentially accessible set length |D|. When 
computing the overlap occurrences, if a region in D occurred more than once, only the first 
overlap was counted. The cumulative overlap fractions of ranked motifs were then compared 
between BPNet, MEME/FIMO and HOMER. 
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